Sorting topological stabilizer models in three dimensions
نویسندگان
چکیده
منابع مشابه
Topological insulators in three dimensions.
We study three-dimensional generalizations of the quantum spin Hall (QSH) effect. Unlike two dimensions, where a single Z2 topological invariant governs the effect, in three dimensions there are 4 invariants distinguishing 16 phases with two general classes: weak (WTI) and strong (STI) topological insulators. The WTI are like layered 2D QSH states, but are destroyed by disorder. The STI are rob...
متن کاملLocal stabilizer codes in three dimensions without string logical operators
We suggest concrete models for self-correcting quantum memory by reporting examples of local stabilizer codes in 3D that have no string logical operators. Previously known local stabilizer codes in 3D all have stringlike logical operators, which make the codes non-self-correcting. We introduce a notion of “logical string segments” to avoid difficulties in defining one-dimensional objects in dis...
متن کاملTopological excitonic superfluids in three dimensions
We study the equilibrium and nonequilibrium properties of topological dipolar intersurface exciton condensates within time-reversal invariant topological insulators in three spatial dimensions without a magnetic field. We elucidate that, in order to correctly identify the proper pairing symmetry within the condensate order parameter, the full three-dimensional Hamiltonian must be considered. As...
متن کاملTopological Anderson insulator in three dimensions.
We show that disorder, when sufficiently strong, can transform an ordinary metal with strong spin-orbit coupling into a strong topological "Anderson" insulator, a new topological phase of quantum matter in three dimensions characterized by disordered insulating bulk and topologically protected conducting surface states.
متن کاملCell sorting in three dimensions: topology, fluctuations, and fluidlike instabilities.
Previous 2D and 3D models concluded that cell sorting requires cytoskeletal fluctuations and is stalled by high tension at heterotypic interfaces. New deterministic and stochastic models show that this is not true in 3D. Sorting in 3D involves both topological untangling and domain coalescence. Coalescence requires fluctuations and low tension, but untangling does not. It occurs by a Plateau-Ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2019
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.100.155137